
Made by batuexams.com

at MET Bhujbal Knowledege City

Object Orented Programming in C++ Department

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 1

Sandipani Technical campus Faculty of Engineering, Latur

Unit-5 Templates and Exception Handling

5.1 Exception Handling

5.1.1 Need of an Exception

 Usually there are mainly two types of bugs, logical errors and syntactic errors.

 The logical errors occur due to poor understanding of problem and syntactic errors arise

due to poor understanding of language.

 There are some other problems called exceptions that are run time anomalies or unused

conditions that a program may encounter while executing.

 These anomalies can be division by zero, access to an array outside of its bounds or

running out of memory or disk space.

 When a program encounters an exceptional condition it is important to identify it and

dealt with it effectively.

 An exception is an object that is sent from the part of the program where an error occurs

to that part of program which is going to control the error.

 The purpose of exception handling mechanism is to detect and report exceptional

circumstances so that appropriate action can be taken.

5.1.2 Exception Handling Overview

 Exceptions are basically of two types namely, synchronous and asynchronous exceptions.

 Errors such as “out of range index” and “over flow” belong to synchronous type

exceptions.

 The errors that are caused by the events beyond the control of program(such as keyboard

interrupts) are called asynchronous exceptions.

 The purpose of exception handling mechanism is to detect and report an exceptional

circumstances so that appropriate action can be taken.

 The mechanism for exception handling is

 1. Find the problem (hit the exception).

 2. Inform that an error has occurred (throw the exception).

 3. Receive the error information (Catch the exception).

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 2

Sandipani Technical campus Faculty of Engineering, Latur

 4. Take corrective actions (Handle the exception).

 The error handling code mainly consist of two segments,one to detect error and throw

exceptions and other to catch the exceptions and to take appropriate actions.

5.1.3 Exception Handling Mechanism

 C++ exception handling mechanism is basically built upon three keywords namely try,

throw and catch.

 The keyword try is used to preface a block of statements which may generate exceptions.

 This block of statement is called try block. When an exception is detected it is thrown

using throw statement in the try block.

 A catch block defined by the keyword catch who „catches‟ the exception thrown by the

throw statement in the try block and handles it appropriately.

 The catch block that catches an exception must immediately follow the try block that

throws the exception.

Syntax: -

……………….

………………..

try

{

…………

…………….. //block of statements which detects and throw an exceptions

throw exception; //throw Exception to catch block

…………….

…………….

}

catch(type arg) //catches exceptions

{

…………… // Block of statements that handles the exceptions

………………

…………….

}

………….

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 3

Sandipani Technical campus Faculty of Engineering, Latur

…………..

 When the try block throws an exception, the program control leaves the try block and

enters the catch statement of the catch block.

 If the type of object thrown matches the arg type in the catch statement, then the catch

block is executed for handling the exception.

 If they donot match, the program is aborted with the help of abort() function which is

executed implicitly by the compiler.

 When no exception is detected and thrown, the control goes to the statement immediately

after the catch block i.e catch block is skipped.

 The below diagram 9.1 will show the mechanism of exception handling

 Example:

#include<iostream>

using namespace std;

int main()

{

int a,b;

cout<<"enter the values of a and b";

cin>>a;

cin>>b;

try

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 4

Sandipani Technical campus Faculty of Engineering, Latur

{

if(b!=0)

{

cout<<"result(a/b)="<<a/b<<"\n";

}

else

{

throw(b);

}

}

catch(int i)

{

cout<<"exception caught : b = "<<i<<"\n";

}

cout<<"end";

return 0;

}

The program detects and catches a division by zero problem.

5.1.4 Exception inside Function

 The exceptions are thrown by functions that are invoked from within the try block.

 The point at which the throw is executed is called throw point.

 Once an exception is thrown to catch block, control cannot return to the throw point.

 The general format of code for this kind of relationship is shown below

type function (arg list) //function with exception

{ ………..

……………

throw(object); //throw exception

………..

………..

}

………

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 5

Sandipani Technical campus Faculty of Engineering, Latur

………….

try

{ ……….

………. Invoke function here

………..

}

catch(type arg) //catches exception

{

…………..

…………. Handle exception here

………….

}

…………..

…………..

 It is to be noted here that the try block is immediately followed by the catch block

irrespective of the location of the throw point.

 The below program demonstrates how a try block invokes a function that generates an

exception

Example:

#include<iostream>

using namespace std;

void divide(int x,int y)

{

if(y!=0)

{

 cout<<"result(a/b)="<<x/y<<"\n";

}

else

{

 throw(y);

}

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 6

Sandipani Technical campus Faculty of Engineering, Latur

}

int main()

{

int a,b;

cout<<"enter the values of a and b";

cin>>a;

cin>>b;

try

{

 divide(a,b);

}

catch(int i)

{

cout<<"exception caught : b = "<<i<<"\n";

}

cout<<"end";

return 0;

}

5.1.4 Throwing Mechanism

 When an exception is encountered it is thrown using the throw statement in the following

form:

throw (exception);

throw exception;

throw;

 The operand object exception may be of any type including constants.

 It is also possible to throw objects not intended for error handling.

 When an exception is thrown, it will be caught by the catch statement associated with the

try block.

 In other words the control exits the try block and transferred to catch block after the try

block.

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 7

Sandipani Technical campus Faculty of Engineering, Latur

5.1.5 Catching Mechanism

 Code for handling exceptions is included in catch blocks. The catch block is like a

function definition and is of form

Catch(type arg)

{

statements for managing exceptions;

}

 The type indicates the type of exception that catch block handles. The parameter arg is an

optional parameter name.

 The catch statement catches an exception whose type matches with the type of catch

argument.

 When it is caught, the code in the catch block is executed.

 After executing the handler, the control goes to the statement immediately following in

catch block.

 Due to mismatch, if an exception is not caught abnormal program termination will occur.

In other words catch block is simply skipped if the catch statement does not catch an

exception.

5.1.6 Multiple Catch Statements

 In some situations the program segment has more than one condition to throw an

exception.

 In such case more than one catch blocks can be associated with a try block as shown

below:

try

{

//try block

}

catch(type1 arg)

{

//catch block1

}

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 8

Sandipani Technical campus Faculty of Engineering, Latur

catch(type 2 arg)

{

//catch block 2

}

……………..

…………….

catch (type N arg)

{

//catch block N

}

 When an exception is thrown, the exception handlers are searched in order for an

appropriate match. The first handler that yields a match is executed.

 After executing the handler, the control goes to the first statement after the last catch

block for that try.

 When no match is found, the program is terminated.

 If in some case the arguments of several catch statements match the type of an exception,

then the first handler that matches the exception type is executed.

Example:

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 9

Sandipani Technical campus Faculty of Engineering, Latur

5.2 Templates

 Template is a new concept which enables us to define generic and functions and thus

provides support for generic programming.

 Generic programming as an approach where generic types are used as parameters in

algorithms so that they work for a variety of suitable data types and data structures.

 A template can be used to create a family of classes or functions.

 For example, a class template for an array class would enable us to create arrays of

various data types such as int array and float array.

 Similarly, we can define a template for a function, say mul(),that would help us create

versions of mul() for multiplying int, float and double type values.

 A template can be considered as a kind of macro. When an object of a specific type is

define for actual use, the template definition for that class is substitute with the required

data type.

 Since a template is defined with a parameter that would be replaced by a specified data

type at the time of actual use of the class or function, the templates are sometimes called

parameterized class or functions.

5.2.1 Function Template

 We write a generic function that can be used for different data types. Examples of

function templates are sort(), max(), min(), printArray().

Example:

#include <iostream>

using namespace std;

// One function works for all data types. This would work

template <typename T>

T myMax(T x, T y)

{

return (x > y)? x: y;

}

int main()

{

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 10

Sandipani Technical campus Faculty of Engineering, Latur

cout << myMax<int>(3, 7) << endl; // Call myMax for int

cout << myMax<double>(3.0, 7.0) << endl; // call myMax for double

cout << myMax<char>('g', 'e') << endl; // call myMax for char

return 0;

}

5.2.2 Class Template

Class Templates Like function templates, class templates are useful when a class defines

something that is independent of the data type. Can be useful for classes like LinkedList,

BinaryTree, Stack, Queue, Array, etc.

Example:

#include <iostream>

using namespace std;

template <typename T>

class Array

{

private:

 T *ptr;

 int size;

public:

 Array(T arr[], int s)

 {

 ptr = new T[s];

 size = s;

 for(int i = 0; i < size; i++)

 ptr[i] = arr[i];

 }

 void print()

{

for (int i = 0; i < size; i++)

 cout<<" "<<*(ptr + i);

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-5 Exception Handling and Template Prof. Laxmikant Goud: Page 11

Sandipani Technical campus Faculty of Engineering, Latur

 cout<<endl;

}

};

int main()

{

 int arr[5] = {1, 2, 3, 4, 5};

 Array<int> a(arr, 5);

 a.print();

 return 0;

}

DOWNLOADED FROM BATU-EXAMS.in

Made by batuexams.com

at MET Bhujbal Knowledege City

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

